Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations

نویسندگان

  • Jérôme Droniou
  • Robert Eymard
چکیده

Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Richards’, Stefan’s and Leray–Lions’ models), and we prove a uniform-in-time strong-in-space convergence result for the gradient scheme approximations of these equations. In order to establish this convergence, we develop several discrete compactness tools for numerical approximations of parabolic models, including a discontinuous Ascoli-Arzelà theorem and a uniform-in-time weak-in-space discrete Aubin-Simon theorem. The model’s degeneracies, which occur both in the time and space derivatives, also requires us to develop a discrete compensated compactness result. AMS Subject Classification: 65M12, 35K65, 46N40.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Parameter determination in a parabolic inverse problem in general dimensions

It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...

متن کامل

Large time behavior for some nonlinear degenerate parabolic equations

We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Dissipative and Entropy Solutions to Non-isotropic Degenerate Parabolic Balance Laws

Abstract. We propose a new notion of weak solutions (dissipative solutions) for nonisotropic, degenerate, second order, quasi-linear parabolic equations. This class of solutions is an extension of the notion of dissipative solutions for scalar conservation laws introduced by L. C. Evans. We analyze the relationship between the notions of dissipative and entropy weak solutions for non-isotropic,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2016